
System Cost W QPS Queries
Joule

GB
Watt

TCO
GB

TCO
QPS

Traditionals:
5-2TB HD $2K 250 1500 6 40 0.26 1.77
160GB PCIe SSD $8K 220 200K 909 0.72 53 0.04
64GB DRAM $3K 280 1M 3.5K 0.23 59 0.004

FAWNs:
2TB Disk $350 20 250 12.5 100 0.20 1.61
32GB SSD $500 15 35K 2.3K 2.1 16.9 0.015
2GB DRAM $250 15 100K 6.6K 0.13 134 0.003

Table 4: Traditional and FAWN node statistics

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

D
at
as
et
 S
iz
e
in
 T
B

Query Rate (Millions/sec)

Tra
diti
ona

l + D
RAM

FAWN + Disk

FAWN + Flash

FAWN + DRAM

Figure 16: Solution space for lowest 3-year TCO as a function
of dataset size and query rate.

second. The dividing lines represent a boundary across which one
system becomes more favorable than another.

Large Datasets, Low Query Rates: FAWN+Disk has the lowest
total cost per GB. While not shown on our graph, a traditional
system wins for exabyte-sized workloads if it can be configured
with sufficient disks per node (over 50), though packing 50 disks per
machine poses reliability challenges.

Small Datasets, High Query Rates: FAWN+DRAM costs the
fewest dollars per queries/second, keeping in mind that we do not
examine workloads that fit entirely in L2 cache on a traditional node.
This somewhat counterintuitive result is similar to that made by
the intelligent RAM project, which coupled processors and DRAM
to achieve similar benefits [5] by avoiding the memory wall. We
assume the FAWN nodes can only accept 2 GB of DRAM per node,
so for larger datasets, a traditional DRAM system provides a high
query rate and requires fewer nodes to store the same amount of data
(64 GB vs 2 GB per node).

Middle Range: FAWN+SSDs provide the best balance of storage
capacity, query rate, and total cost. As SSD capacity improves, this
combination is likely to continue expanding into the range served
by FAWN+Disk; as SSD performance improves, so will it reach into
DRAM territory. It is therefore conceivable that FAWN+SSD could
become the dominant architecture for a wide range of random-access
workloads.

Are traditional systems obsolete? We emphasize that this analysis
applies only to small, random access workloads. Sequential-read
workloads are similar, but the constants depend strongly on the per-
byte processing required. Traditional cluster architectures retain
a place for CPU-bound workloads, but we do note that architec-
tures such as IBM’s BlueGene successfully apply large numbers of

low-power, efficient processors to many supercomputing applica-
tions [14]—but they augment their wimpy processors with custom
floating point units to do so.

Our definition of “total cost of ownership” also ignores several
notable costs: In comparison to traditional architectures, FAWN
should reduce power and cooling infrastructure, but may increase
network-related hardware and power costs due to the need for more
switches. Our current hardware prototype improves work done per
volume, thus reducing costs associated with datacenter rack or floor
space. Finally, of course, our analysis assumes that cluster software
developers can engineer away the human costs of management—an
optimistic assumption for all architectures. We similarly discard
issues such as ease of programming, though we ourselves selected
an x86-based wimpy platform precisely for ease of development.

6. RELATED WORK
FAWN follows in a long tradition of ensuring that systems are bal-
anced in the presence of scaling challenges and of designing systems
to cope with the performance challenges imposed by hardware ar-
chitectures.

System Architectures: JouleSort [44] is a recent energy-
efficiency benchmark; its authors developed a SATA disk-based
“balanced” system coupled with a low-power (34 W) CPU that sig-
nificantly out-performed prior systems in terms of records sorted per
joule. A major difference with our work is that the sort workload
can be handled with large, bulk I/O reads using radix or merge sort.
FAWN targets even more seek-intensive workloads for which even
the efficient CPUs used for JouleSort are excessive, and for which
disk is inadvisable.

More recently, several projects have begun using low-power
processors for datacenter workloads to reduce energy consump-
tion [6, 34, 11, 50, 20, 30]. The Gordon [6] hardware architecture
argues for pairing an array of flash chips and DRAM with low-power
CPUs for low-power data intensive computing. A primary focus of
their work is on developing a Flash Translation Layer suitable for
pairing a single CPU with several raw flash chips. Simulations on
general system traces indicate that this pairing can provide improved
energy-efficiency. Our work leverages commodity embedded low-
power CPUs and flash storage for cluster key-value applications,
enabling good performance on flash regardless of FTL implemen-
tation. CEMS [20], AmdahlBlades [50], and Microblades [30] also
leverage low-cost, low-power commodity components as a building
block for datacenter systems, similarly arguing that this architecture
can provide the highest work done per dollar and work done per
joule. Microsoft has recently begun exploring the use of a large clus-
ter of low-power systems called Marlowe [34]. This work focuses
on taking advantage of the very low-power sleep states provided
by this chipset (between 2–4 W) to turn off machines and migrate
workloads during idle periods and low utilization, initially target-
ing the Hotmail service. We believe these advantages would also
translate well to FAWN, where a lull in the use of a FAWN cluster
would provide the opportunity to significantly reduce average en-
ergy consumption in addition to the already-reduced peak energy
consumption that FAWN provides. Dell recently designed and has
begun shipping VIA Nano-based servers consuming 20–30 W each
for large webhosting services [11].

Considerable prior work has examined ways to tackle the “mem-
ory wall.” The Intelligent RAM (IRAM) project combined CPUs
and memory into a single unit, with a particular focus on energy effi-
ciency [5]. An IRAM-based CPU could use a quarter of the power

