
Data Log
In-memory
Hash Index

Log Entry

KeyFrag Valid Offset

160-bit Key

KeyFrag

Key Len Data

Inserted values
are appended

Scan and Split

Concurrent
Inserts

Datastore List Datastore List
Data in new range
Data in original range Atomic Update

of Datastore List

(a) (b) (c)

Figure 2: (a) FAWN-DS appends writes to the end of the Data Log. (b) Split requires a sequential scan of the data region, transfer-
ring out-of-range entries to the new store. (c) After scan is complete, the datastore list is atomically updated to add the new store.
Compaction of the original store will clean up out-of-range entries.

3.2 Understanding Flash Storage
Flash provides a non-volatile memory store with several signifi-
cant benefits over typical magnetic hard disks for random-access,
read-intensive workloads—but it also introduces several challenges.
Three characteristics of flash underlie the design of the FAWN-KV

system described throughout this section:

1. Fast random reads: (� 1 ms), up to 175 times faster than
random reads on magnetic disk [35, 40].

2. Efficient I/O: Flash devices consume less than one Watt even

under heavy load, whereas mechanical disks can consume over
10 W at load. Flash is over two orders of magnitude more
efficient than mechanical disks in terms of queries/Joule.

3. Slow random writes: Small writes on flash are very expen-
sive. Updating a single page requires first erasing an entire
erase block (128 KB–256 KB) of pages, and then writing the

modified block in its entirety. As a result, updating a single byte
of data is as expensive as writing an entire block of pages [37].

Modern devices improve random write performance using write
buffering and preemptive block erasure. These techniques improve

performance for short bursts of writes, but recent studies show that

sustained random writes still perform poorly on these devices [40].
These performance problems motivate log-structured techniques

for flash filesystems and data structures [36, 37, 23]. These same
considerations inform the design of FAWN’s node storage manage-

ment system, described next.

3.3 The FAWN Data Store
FAWN-DS is a log-structured key-value store. Each store contains

values for the key range associated with one virtual ID. It acts to
clients like a disk-based hash table that supports Store, Lookup,

and Delete.1

FAWN-DS is designed specifically to perform well on flash stor-

age and to operate within the constrained DRAM available on wimpy
nodes: all writes to the datastore are sequential, and reads require a
single random access. To provide this property, FAWN-DS maintains
an in-DRAM hash table (Hash Index) that maps keys to an offset in
the append-only Data Log on flash (Figure 2a). This log-structured
design is similar to several append-only filesystems [42, 15], which
avoid random seeks on magnetic disks for writes.

1We differentiate datastore from database to emphasize that we do not provide a
transactional or relational interface.

/* KEY = 0x93df7317294b99e3e049, 16 index bits */
INDEX = KEY & 0xffff; /* = 0xe049; */
KEYFRAG = (KEY >> 16) & 0x7fff; /* = 0x19e3; */
for i = 0 to NUM HASHES do

bucket = hash[i](INDEX);
if bucket.valid && bucket.keyfrag==KEYFRAG &&

readKey(bucket.offset)==KEY then
return bucket;

end if
{Check next chain element...}

end for
return NOT FOUND;

Figure 3: Pseudocode for hash bucket lookup in FAWN-DS.

Mapping a Key to a Value. FAWN-DS uses an in-memory
(DRAM) Hash Index to map 160-bit keys to a value stored in the
Data Log. It stores only a fragment of the actual key in memory to
find a location in the log; it then reads the full key (and the value)
from the log and verifies that the key it read was, in fact, the correct
key. This design trades a small and configurable chance of requiring
two reads from flash (we set it to roughly 1 in 32,768 accesses) for
drastically reduced memory requirements (only six bytes of DRAM
per key-value pair).

Figure 3 shows the pseudocode that implements this design for
Lookup. FAWN-DS extracts two fields from the 160-bit key: the i
low order bits of the key (the index bits) and the next 15 low order

bits (the key fragment). FAWN-DS uses the index bits to select a
bucket from the Hash Index, which contains 2i hash buckets. Each
bucket is only six bytes: a 15-bit key fragment, a valid bit, and a
4-byte pointer to the location in the Data Log where the full entry is
stored.

Lookup proceeds, then, by locating a bucket using the index bits

and comparing the key against the key fragment. If the fragments
do not match, FAWN-DS uses hash chaining to continue searching

the hash table. Once it finds a matching key fragment, FAWN-DS
reads the record off of the flash. If the stored full key in the on-flash

record matches the desired lookup key, the operation is complete.
Otherwise, FAWN-DS resumes its hash chaining search of the in-
memory hash table and searches additional records. With the 15-bit
key fragment, only 1 in 32,768 retrievals from the flash will be
incorrect and require fetching an additional record.

The constants involved (15 bits of key fragment, 4 bytes of log
pointer) target the prototype FAWN nodes described in Section 4.

